Automatic Stroke Lesions Segmentation in Diffusion-Weighted MRI

نویسندگان

  • Noranart Vesdapunt
  • Nongluk Covavisaruch
چکیده

Diffusion-Weighted Magnetic Resonance Imaging (DWI) is widely used for early cerebral infarct detection caused by ischemic stroke. Manual segmentation is done by a radiologist as a common clinical process, nonetheless, challenges of cerebral infarct segmentation come from low resolution and uncertain boundaries. Many segmentation techniques have been proposed and proved by manual segmentation as gold standard. In order to reduce human error in research operation and clinical process, we adopt a semi-automatic segmentation as gold standard using Fluid-Attenuated Inversion-Recovery (FLAIR) Magnetic Resonance Image (MRI) from the same patient under controlled environment. Extensive testing is performed on popular segmentation algorithms including Otsu method, Fuzzy C-means, Hill-climbing based segmentation, and Growcut. The selected segmentation techniques have been validated by accuracy, sensitivity, and specificity using leave-one-out cross-validation to determine the possibility of each techniques first then maximizes the accuracy from the training set. Our experimental results demonstrate the effectiveness of selected methods. Keywords— DWI, FLAIR MRI, stroke lesions, segmentation, Otsu method, Fuzzy C-means clustering, Hill climbing, Growcut

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

بررسی مبتلایان حملات ایسکمیک گذرا از نظر وجود ضایعات حاد مغز در MRI با نمای D‏iffusion Weighted: مطالعه 50 بیمار

Background: Finding an acute brain lesion by diffusion-weighted (DW) MRI upon an episode of transient ischemic attack (TIA) is a predictor of imminent stroke in the near future. Therefore, exploring risk factors associated with lesions in DW-MRI of the brain is important in adopting an approach to TIA management. In the current study, we tried to determine the risk factors associated with lesio...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014